A GENERALIZATION OF THE RETENTION INDEX SYSTEM INCLUDING LINEAR TEMPERATURE PROGRAMMED GAS-LIQUID PARTITION CHROMATOGRAPHY

H. VAN DEN DOOL AND P. DEC. KRATZ I.F.F. Inc., Union Beach, N.J. (U.S.A.) (Received December 27th, 1962)

The determination of retention data serves different purposes and the choice of the type of retention parameter depends on the purpose.

If the investigation is concerned with the study of the physical phenomena underlying the behaviour of compounds in gas chromatographic systems, the specific retention volume will be the parameter of choice. Defined as:

$$V_{g(x)} = RT/M_L \gamma_x P^{\circ}_x \tag{1}$$

it describes peak positions in terms with a physical meaning.

However, the majority of the users of the gas-liquid partition chromatography (GLPC) technique are not directly interested in the study of these physical phenomena but in the identification of the components of mixtures. The difficulties encountered in the accurate determination of the specific retention volume (the more as many instrument manufacturers tend to forget the installation of proper gauges for measurement of column inlet pressures) and the reproduction of these determinations, together with the elaborate calculations involved, make this parameter impractical for routine identification work. The necessity of simple and reproducibly determinable retention parameters for this type of work was very clearly expressed by PRIMAVESI¹.

To achieve this goal, it is obvious that the accurate determination of as many operational variables as possible must be eliminated.

The first attempt in this direction was the *relative retention*, defined as:

$$r_{x,s} = V_{g(x)}/V_{g(s)} = t'_x/t'_s$$
(2)

This relative retention eliminated, it is true, many operational variables; it has, however, the drawback that the choice of the reference material is completely at the discretion of the investigator. And apart from the often used *n*-pentane, one may encounter in the literature reference materials such as carbon tetrachloride², hexadecanal³ and coumarone⁴.

To obtain a fixed reference point SMITH⁵ introduced the *theoretical nonane* system. This system is based on the fact that under identical, isothermal conditions, the higher members of a homologous series show the relationship:

$$\log V_{g(x)} = A + Bn_x \tag{3}$$

between the retention volume and the number of C-atoms. Using the normal paraffins as the reference series, the constants A and B are calculated and the value $n_x = 9$ is substituted in the equation to find the reference point. The theoretical nonane index is now defined as:

$$r_{x,9} = \frac{V_{g(x)}}{V_{g(9)}} = \frac{t'_x}{t'_9}$$
(4)

The principal disadvantage of this system is the determination of the reference point by extrapolation and not by direct observation.

The retention index system, introduced by $KovAts^{6}$ was also based on the *n*-paraffinic series as the reference materials. However, by using the *n*-paraffins eluting directly before and after the compound under investigation as the reference points the extrapolation was eliminated. Fixed reference points are obtained in this way by attaching to each *n*-paraffin the retention index:

$$I = 100 n \tag{5}$$

The position of the peak of a compound is now found from:

$$I = 100 \ i \frac{\log V_{g(x)} - \log V_{g(n)}}{\log V_{g(n+i)} - \log V_{g(n)}} + 100 \ n \tag{6}$$

It should be noted here that KovATS uses the logarithms of the retention volumes and further that he showed that I is linearly dependent on temperature with in most cases a very small temperature coefficient.

It is an advantage of isothermal GLPC that when comparing retention data obtained in one chromatogram it is permissible to replace V_g by t'. In temperature

programmed GLPC, however, this replacement is not allowed, which makes direct application of the retention parameter systems described impossible.

The retention parameter most frequently encountered in linear temperature programmed GLPC is the *retention temperature*. Unless applied under strictly identical conditions, this parameter will vary depending on heating rate and carrier gas flowrate. In Fig. I this is shown for two benzyl esters. However, as might be seen from Fig. 2, the difference in retention temperatures between two compounds is remarkably constant.

Remembering that in many cases in linear temperature programmed GLPC for the members of a homologous series the equation:

$$t'_x = C + Dn_x \tag{7}$$

will hold, we found that the retention index may be generalized to include also linear temperature programmed GLPC by rewriting eqn. (6) as:

$$I = 100 \ i \ \frac{X - M_{(n)}}{M_{(n+i)} - M_{(n)}} + 100 \ n \tag{8}$$

In isothermal GLPC, the retention index is found now by substituting for X, $M_{(n)}$ and $M_{(n + i)}$ the logarithms of the adjusted retention volumes (adjusted retention times) of respectively the compound and both markers. In linear temperature programmed GLPC for X, $M_{(n)}$ and $M_{(n + i)}$ either the retention temperatures or the adjusted retention times are substituted. Here an advantage of this way of operation over isothermal operation demonstrates itself, as gas holdup-time does not need to be

measured, which is specifically of importance in detectors which are relatively insensitive to air.

Using the same column packing, we expected that in all cases in which the temperature coefficient of the retention index is small the retention index for a compound would be practically the same in isothermal and in linear programmed GLPC, thus extending the usefulness of the retention index. The expectation proved to be true (Table I).

ا ساراسار اسلا که بار	Т	A	B	L	E	I
-----------------------	---	---	---	---	---	---

RETENTION INDICES UNDER VARIOUS CONDITIONS OF OPERATION Instrument: F & M 500; katharometer. Stationary phase: Carbowax 20M, 20% on Celite

		Isothermal at 125°		Programmed 75-228° at 4.6°/min	
Compound		Flow rate (ml/min)		Flow rate (ml/min)	
		55.6	80.0	80.0	
	Ethyl formate	820	822	822	
	Ethyl butyrate	1032	1032	1032	
	Ethyl valerate	1130	1136	1130–1128	
	Ethyl hexanoate	1226	1228	1228-1227	

Although the retention index system is based on the n-paraffinic series, it is sometimes useful to have at hand a secondary reference set. If the retention indices of the members of the secondary set are known, values obtained in the secondary system may be converted into standard retention indices, using the equation:

$$I = \frac{[S_{(x)} - S_{M(n)}] [I_{M(n+1)} - I_{M(n)}]}{100 i} + I_{M(n)}$$
(9)

In our work we found the ethyl esters of the *n*-fatty acids to be a useful secondary reference set, in which case we attach to each ethyl ester the index S = 100 (n-2). The standard retention indices of these esters are given in Table II, together with the retention indices of many other compounds. From this table also an impression may

TABLE II

Compound	Column	
Compound	SE 30*	Carbowax 20 M **
Aethyl ester of		
Propionic acid		885-885
Butvric acid		970-972-971
Isobutyric acid		903
Valeric acid	808	1081-1081-1085
Isovaleric acid		1013
Hexanoic acid	907	1183-1182-1183
Isohexanoic acid		1094
Heptanoic acid	1008	1282-1281
Octanoic acid	1109	1378–1380
Nonanoic acid	1211	1484-1487
Decanoic acid	1310	1584-1588
Undecanoic acid	1410	1694–1696
Dodecanoic acid	1513	1800-1801
Myristic acid	1714	2002-1998
Hexadecanoic acid	1911	2190
Octadecanoic acid	2098	
Benzoic acid	1080	1631
Phenylacetic acid	1156–1154	1759-1761-1762
Salicylic acid	1181-1181	1794
<i>p</i> -Hydroxybenzoic acid	1435	
o-Hydroxyphenylacetic acid	1260-1269	
p-Hydroxyphenylacetic acid	1460	
Cinnamic acid	1363	2065
o-Hydroxycinnamic acid	1430	
<i>m</i> -Hydroxycinnamic acid	1690	
<i>p</i> -Hydroxycinnamic acid	1498	
Anthranilic acid	1325	2259
β -Hydroxybutyric acid	1320	1464–1457
2-Hydroxyisobutyric acid	1118	_
2-Methylbutyric acid	758	980
2-Keto-octanoic acid	1200	
Crotonic acid		1102
Furoic acid	950	
imethyl ester of		
Oxalic acid	837	1381–1383
Malonic acid	895	1489-1489-1490
Succinic acid	1000–1004	1576
Glutaric acid	1105	1686-1687-1689
Adipic acid	1213	1804
Pimelic acid	1313	1908–1909
Suberic acid	1416	2010
Azelaic acid	1519	2102-2100
Sebacic acid		2213-2210
thyl ester of		
Formic acid		822
Acetic acid		866
Propionic acid	700	940
Butvric acid	787	1032
Isobutyric acid	e - e	950
Valeric acid	884	1130-1128
	8	

RETENTION INDICES OF ESTERS AND OTHER COMPOUNDS

(continued on p. 468)

467

TABLE II (continued)

Isovaleric acid Hexanoic acid Heptanoic acid Octanoic acid Decanoic acid Lauric acid Myristic acid Palmitic acid Stearic acid Salicylic acid Cinnamic acid Lactic acid	<i>SE 30</i> * 979–983 1080–1081 1181 1379–1379 1579 1780 1979 2175 1261 1447 801	Carbowax 20 M** 1064 1228–1227 1324–1327 1422–1427 1631 1840 2038 2238 1828
Isovaleric acid Hexanoic acid Heptanoic acid Octanoic acid Decanoic acid Lauric acid Myristic acid Palmitic acid Stearic acid Salicylic acid Cinnamic acid Lactic acid	979–983 1080–1081 1181 1379–1379 1579 1780 1979 2175 1261 1447	1064 1228–1227 1324–1327 1422–1427 1631 1840 2038 2238 1828
Hexanoic acid Heptanoic acid Octanoic acid Decanoic acid Lauric acid Myristic acid Palmitic acid Stearic acid Salicylic acid Cinnamic acid Lactic acid	979–983 1080–1081 1181 1379–1379 1579 1780 1979 2175 1261 1447	1228–1227 1324–1327 1422–1427 1631 1840 2038 2238
Heptanoic acid Octanoic acid Decanoic acid Lauric acid Myristic acid Palmitic acid Stearic acid Salicylic acid Cinnamic acid Lactic acid	1080-1081 1181 1379-1379 1579 1780 1979 2175 1261 1447	13241327 14221427 1631 1840 2038 2238 1828
Octanoic acid Decanoic acid Lauric acid Myristic acid Palmitic acid Stearic acid Salicylic acid Cinnamic acid Lactic acid	1000-1001 1181 1379-1379 1579 1780 1979 2175 1261 1447	1324-1327 14221427 1631 1840 2038 2238 1828
Decanoic acid Lauric acid Myristic acid Palmitic acid Stearic acid Salicylic acid Cinnamic acid Lactic acid	1379–1379 1579 1780 1979 2175 1261 1447	1422-1427 1631 1840 2038 2238 1828
Lauric acid Myristic acid Palmitic acid Stearic acid Salicylic acid Cinnamic acid Lactic acid	1379-1379 1579 1780 1979 2175 1261 1447	1031 1840 2038 2238 1828
Lauric acid Myristic acid Palmitic acid Stearic acid Salicylic acid Cinnamic acid Lactic acid	1579 1780 1979 2175 1261 1447	1840 2038 2238 1828
Myristic acid Palmitic acid Stearic acid Salicylic acid Cinnamic acid Lactic acid	1780 1979 2175 1261 1447	2038 2238 1828
Palmitic acid Stearic acid Salicylic acid Cinnamic acid Lactic acid	1979 2175 1261 1447	2238 1828
Stearic acid Salicylic acid Cinnamic acid Lactic acid	2175 1261 1447	1828
Salicylic acid Cinnamic acid Lactic acid	1261 1447	T828
Cinnamic acid Lactic acid	1447	****
Lactic acid	9 or	2108
	801	
Diethyl ester of		
Oxalic acid	948	
Malonic acid	1035	
Succinic acid	1139	
Propyl ester of		
Acetic acid	704	
sopropyl ester of		
Acetic acid		866-866
Butyl ester of		
Acetic acid	802	1065
Benzoic acid	1360	1871
sobutyl ester of		
A cotia paid		7000 7000
		1002-1002
Isobutyric acid	901	1090
Cinnamic acid	1598	
Benzoic acid	1318	1799
1 myl ester of		
Acetic acid	896-000	1169
Benzoic acid	1462	
· Salicylic acid	1535	
soamvl ester of		
Acetic acid	853	11161116
Benzoic acid	1425	1921
Hexyl ester of		
Formic acid	013	1216
A cotic acid	3+3	1410 1061
Duturio poid	993-993	1204
	1177	1400
Isobutyric acid		1337
Benzoic acid	1505	2008-2070
Salicylic acid	1684	2208
Hexanoic acid	1371	1606
Isohexyl ester of		
Acetic acid		1208

(continued on p. 469)

<u> </u>	Colu	:,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Compound	SE 30*	Carbowax 20 M**
Heptyl ester of		
Acetic acid	1096	
Octyl ester of		
Salicylic acid	1895	
Nonyl ester of		
Acetic acid	1296	1569
Decyl ester of		
Acetic acid	1395	1674
Dodecyl ester of		
Acetic acid	1595	
Benzyl ester of		
Formic acid	1057	1687
Acetic acid	1141	1728
Propionic acid	1237	1791
Cinnamic acid	1325 1682	1870
Phenylethyl ester of		
Cinnamic acid	2143	
Anthranilic acid	2088	
Cinnamyl ester of		
Formic acid	1332	
Acetic acid	1422	2125
Propionic acid	1519	2194
Isobutyric acid	1502	2179
Cinnamic acid	2052	2209
Allyl ester of		
Hexanoic acid	1062-1060	1360
Heptanoic acid	1163	1463
Octanoic acid	1262	1566
Alcohols		
Methanol		866-866
Ethanol		895-899
Butanol	,	1121-1120
Isobutanol		1067
Amyl alcohol		1228-1228
Isoamyl alcohol	723	1184
Hexanol	854	1325-1323
Heptanol	957	1422-1422-1427
Octanol Benzul alcohol	1057-1050-1059	+555 18581860
Phenylethyl alcohol	1107	1893-1895
Cinnamyl alcohol	1295	2238-2238

TABLE II (continued)

(continued on p. 470)

Combound	Column		
Compound	SE 30*	Carbowax 20 M**	
1ldehydes			
Butanal		866	
Hexanal		1080-1080	
Heptanal	895	1184-1183	
Nonanal	1091	1387-1385	
Decanal	1193	1498-1498	
Undecanal	1296	1603-1608	
Dodecanal	1397	1711-1708	
Tridecanal	1501	1815-1817	
Hydratropic aldehyde	1080	1631	
o-Methoxycinnamaldehyde	1512	-	
Vanillin	1379		
Ethylvanillin	1446-1442		
Keiones			
Acetone		822	
Methyl ethyl ketone		882-882	
Methyl isobutyl ketone	710		
Methyl amyl ketone	873	1184-1178	
Methyl hexyl ketone	973	1280-1276	
Methyl heptyl ketone	212	1383-1380	
Methyl nonyl ketone	1280	1597-1506	
Methyl decyl ketone	1384	-357 -350	
Methyl undecyl ketone	1485	1807-1800	
Diacetyl	-4-5	956	
Miscellaneous			
Dihydrocoumarin	1361		
Anisole	902	1341	

IABLE II (continuea	TABL	EII	(continued)
---------------------	------	-----	-------------

* 25% Silicone rubber SE 30 on Celite: operated under linear temperature programmed conditions.

** 25% Carbowax 20M on Celite; operated under linear temperature programmed conditions.

be obtained of the reproducibility. The difference between two determinations ranged from 0 to 9 with an average difference of 2.

In practice, we run chromatograms of the mixture under investigation without and with a set of reference materials from which we determine the retention indices. By marking the temperature on the chart at 5° intervals and using the chart as a graph we not only easily obtain at the same time retention temperatures and the accurate end point of our program, but also have a control on the regularity of the rise in temperature.

It should be further remarked here that in quantitative work in linear temperature programmed gas-liquid partition chromatography the method for calculation of peak areas by using retention time \times peak height is not applicable (see Fig. 3). Hence also the method of SMITH AND LEVI⁷ for the estimation of peak width-at-halfheight from a graph of known peak widths-at-half-height *versus* retention time is not applicable.

SYMBOLS USED

Va	specific retention volume
R	gas constant
T	absolute temperature (°K)
M_L	molecular weight of the stationary phase
ν	activity coefficient
P°	saturated vapor pressure
$\gamma_{x,s}$	relative retention of compound X with regard to the reference material S
ť	adjusted retention time
n	number of carbon atoms in the compound
1	retention index
i	difference in numbers of carbon atoms of the reference materials
$M_{(n)}; M_{(n+1)}$	reference material with (n) ; $(n + i)$ carbon atoms
S	retention index in the secondary reference system
A; B; C; D	constants
subscripts	refer to the compounds

SUMMARY

The different ways of describing peak positions on gas chromatograms are reviewed. The retention index is preferred to the theoretical nonane system and the relative retention.

The equation given by KovATs for the calculation of the retention index in case of isothermal operation is transformed to a more general form to include also the case of linear temperature programmed operation. This generalized equation gives the same retention index for both ways of operation.

REFERENCES

¹ G. R. PRIMAVESI, Informal Symposium of the Gas Chromatography Discussion Group of the Hydrocarbon Research Group of the Institute of Petroleum, Liverpool, 1960.

² P. W. WEST, B. SEN, B. R. SANT, K. L. MALLIK AND J. G. SEN GUPTA, J. Chromatog., 6 (1961) 220. ³ G. M. GRAY, J. Chromatog., 6 (1961) 236. ⁴ J. W. SWEETING AND J. F. K. WILSHIRE, J. Chromatog., 6 (1961) 385, 391.

⁵ J. F. SMITH, Chem. Ind. (London), (1960) 1024.

⁶ E. KovAts, Helv. Chim. Acta, 41 (1958) 1915.

7 D. M. SMITH AND L. LEVI, J. Agr. Food Chem., 9 (1961) 230.